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The success In using VHF and UHF frequency systems for sounding polar Ice
sheels has been tempered by an uncertainty In the in-situ dielectric constant e,
which controls the efliective velocity V. of an electromagnetc wave propagating
In an air-Ice mixture. An empirical equation for determining e' vs. density
(speciic gravity, p)was proposed In 1968 by Robinetfal. where e= (I + 0.851
p)2. However, this expression has Met With uncertainty because wide-angile
radar rellraction sounding techniques have produced values of el that are lowr
Ithan Robin's equation predicts. This report discusses radar sounings made on
the McMurdo Ice Shel, Antarctica, and compares the resuiting e' values with
Robin's equationt, labortory measuremenlsontim and ice andol3wexreessions
given In the literature for determining e'vs. the specitlc:gravltyof dryfim and lee.
Our findings indicate that the form of Robin's equation Is valid. However, our
analysis also Indicates the expression could be slightly Improved to read e'=
(I + 0.845 p)2. Reasons are suggested as to why previous wide-angle radar
sounding studies did not reproduce Robin's findings.

Cover~ Radar transceive antenna being tboood from the front of a boom
mounted to a tracked vehicle. Behind Mf e antenna box Is a disk and
support leg used to elevate the boom above the snow surface This
antenna arrangermet was used In 19 74 for proflllng the brine layer in
Ahe McMurdo Ice Shelf and for crevasse detection during a ftranser in
ifti Pensacola Mountains, Antoracla, In search of bluelcerfunwaysites.
The radar console and recording equipment v.,re locte In the vehicle.
(Photo by A. Kovacs.)

For conversion of SI metric units to U.S./Brltlsh customcury units of measurement
consult ASTM Standard E380-89a, StondardPracftceforUse of the nternaonal
System of Unfts, published by the American Society for Testing and Materials,
1916 Race St., Philadelphia, Pa. 19103.
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A Reassessment of the In-Situ Dielectric Constant of Polar Fire

AUSTIN KOVACS, ANTHONYJ. GOW AND REXFORD M. MOREY

INTRODUCTION and gt' = real part of the magnetic permeability
4E = realeffective (bulk) dielectric constant

Since 1948, when Steenson (1951) first used a (e = effective (bulk) conductivity.
100-MHz pulse radio sounding system to estimate
ice thickness on the Seward Glacier in Alaska, "ra- Since the conductivity of dry polar firn and ice is
dioglaciology" has been extensively used for mea- extremely low, the effective pbase velocity of high-
suring the depth of polar ice sheets. Success in using frequency electromagnetic waves can be deter-
sounding systems operating at VHF and UHF fre- mined from
quencies stems in part from the generally very fa-
vorable electromagnetic properties of polar fire and Ve = C (2)
ice, which allow for deep penetration at these fre- where c is the velocity of an electromagnetic wave in
quencies. ahvacis 0.3 v tn etThe relative complex permittivity •r of an air-ice a vacuum, 0.3 m/ns.

If the two-way vertical travel time t of a transmit-mixture can be described by the Debye expression ted wavelet traveling from the surface to the ice bot-

• -tom (or from some internal horizon) and back is
Cr = Er - J~ r = Er + Crs-r (1) measured, then this time may be used to estimate

1 + j o" the distance D to the reflective boundary from

where e' = the relative real part of * (or the dielec- D - tc=_ t Ve (3)
tric constant) 21-e 2

r" = the loss factor or imaginary part ofE!
El = the relative static dielectric constant To accurately make this distance determination, Ee

= the relaxation time for the site must be known. 4 can be determined
o) = the angular frequency. when t and D are known as follows:

In this report the variation in the dielectric constant 4e =I2kD2 . (4)
vs. firn density or specific gravity is discussed, as 12(
this value governs the propagation speed of an Since D is seldom known, this equation is of limited
electromagnetic wave transmitted from VHF and se D is and is ensity profilimite
UHF sounding systems into polar firn and ice. The available he f ir t ait ies possible to estimate a fora
loss tangent, tan 8, is represented by " /e and for e
polar firn and ice is typically >> 0.1 given depth increment based on the mean intervalAn electromagnetic wave propagates through density and a laboratory-determined e' value for

An eldiewitrmagnefeticave proagte s v ith.ouh this mean density.
firn and ice with an effective phase velocity Ve of To circumvent these requirements, borehole in-

Ve = ()/p terferometry and widE angle radar reflection tech-
niques have been used to determine D or ,. These

where 5 is the phase constant determined by methods have been widely discussed by Bentley
(1979), Jezek and Roeloffs (1983), Bogorodsky et al.
(1985) and others. However, Jezek and Roeloffs

g,• C' 12  +~ 2 \1/2 1Wi (1983) state that "collectively, these experiments are
1)= !! 1 + 1 inconclusive." It has been found that Ve determined

202 (E from wide-angle reflection sounding measurements



tends to be too high, and the resulting low value for n = - = 1 + 0.851p.

r is not in agreement with laboratory determina- Ve
tions of e' made on fire and ice of the same density.
System timing error and curved ray paths are two of Since n 2 = £e in the radio-radar frequency range of
the possible reasons given for the observed discrep- interest, then
ancies (Jezek and Roeloffs 1983).

The lack of agreement between laboratory-deter- e = (1 + 0.851 p) 2 . (5)
mined Er values and the various radar field results
has brought into question the validity of Robin's The form of this exponential expression is hereafter
(Robin et al. 1969, Robin 1975) borehole radar inter- referred to as a refraction tyj - -quation.
ferometry measurements, from which he proposed During their study of the -mne infiltration zone
an empirical equation relating the index of refrac- in the McMurdo Ice Shelf, Antarctica (Fi& 1), Kovacs
tion n to the firn-ice density, which is henceforth ref- and Gow (1975) and Kovacs et al. (1981, 1982) used
erenced as the specific gravity p for the purpose of two impulse radar sounding methods to profile the
making his and subsequent equations dimension- depth variations, lateral continuity and "inland"
ally correct: boundary of seawater infiltration into the ice shelf

30' Ford 36.

Rack

McMURDO ROSL

SOUND ISL 4N 3N

ca.01:'Rac 5N2N(&19)

. i, 202 IN/

-77-50S al *; 1" / 0 jb, " z 0
C,04 (Jan.m 19 Is

\ Profile Line 2S

station I
WJon, 19771 Limit of rineI IShelf Edged.. __ Infillrotion

a'207 ~ lt~W 208

I ( .- '6S
McMURDO ICE SHELF 7S relief

Long r wide aef aan
to seo neoor isla0nid

,e! Moroine 9S n WS
Bonds 21 os

/
/ /

/(1 /€mme4 fI /I

<th2c. h / ISLAND
0 5 I0 km i •/ . eie

? Wi t. Maine

Sl30'fom7e / / 30'

Figure 1. Map of the McMurdo Ice Shelf area. The icelfirn transition controls the western limit of brine
infiltration. The eastern limit of brine infiltration is controlled by ice porosity and westward ice shelf move-
ment. Very close to the western side of White Island snow accumulation can exceed 2 m/yr and the ice shelf is
composed of recently infiltrated snow ice. In the crevassed area at the north end of White Island is a small
population of land-locked seals (from Kovacs et al. 1981).
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(Fig. 2). One method previously discussed (Kovacs FIELD MEASUREMENTS
et al. 1982) used a fixed separation, dual-antenna
configuration in which one antenna was a trans- A Geophysical Survey Systems impulse radar
ceiver (colocated transmitter-receiver antenna) and system was used in the field study. The transceiver
the second antenna was a receiver only. The dual- antenna, when smow-coupled, transmitted a broad-
antenna methodology used is discussed in Kovacs band wavelet with a center frequency of about 100
and Morey (1979). With this radar sounding meth- MHz. The vertical two-way travel time of the wave-
od, Ve, D and ee were determined for the firn be- let from the snow surface to various subsurface an-
tween the snow surface and the brine infiltration nual accumulation layers and the top of the brine
layer. The depth of the brine layer was determined infiltration zone in the McMurdo Ice Shelf was re-
by direct borehole measurements one year after corded in real time on a graphic recorder (Fig. 4) and
the radar measurements were made. After the new on a magnetic tape recorder for later analysis on a
snow accumulation was taken into comsideration, frequency analyzer. The two-way flight time was
the agreement between the radar- and borehole- measured from where the transmit wavelet first
determined depths was typically within 2%. These crossed the zero voltage line to where the relected
results indicate that, for the shelf firn layer, where wavelet of interest first crossed the zero line as de-
the most significant depth variation in density oc- picted in Figure 5.
curs, the dual-antenna radar sounding method pro- Two-way travel time measurements were made
vided a satisfactory means for determining e. and at six sites in 1978 where cores were obtained for de-
Ve as well as the depths to internal layers, which termining the depth to the brine layer and the
were dearly revealed in the radar records (Fig. 3 depth-density profile. The measured distance from
and 4). the edge of the McMurdo Ice Shelf, brine layer

While Kovacs et aL (1982) showed good agree- depth, average firn density and the two-way travel
ment between their radar-determined depth to the time are listed in Table 1 as are the calculated e' and
brine layer and the drill-hole-measured depth and Ve values for each radar sounding site. Also given is
gave estimates of ce and Ve, they did not provide in- the location and the two-way travel time to the bot-
formation for an assessment of the Robin equation. tom of the ice shelf at station 307, which was located
Nor did they attempt "to resolve the question of the immediately beyond the 1978 brine infiltration limit
possible discrepancy between laboratory and field (Figs. 2 and 3). The depth of the ice shelf at station
dielectric constant measurements" for firn and ice as 24, located just 40 m before station 307, was esti-
did Jezek and Roeloffs (1983). In this report, data ob- mated by Kovacs et al. (1982). Using the 1977 dual-
tained from the vertical two-way impulse radar antenna radar sounding data, they first determined
sounding measurements on the McMurdo Ice Shelf the depth to the brine layer at station 24. The two-
are presented. The findings are discussed in relation way flight time from the brine layer to the bottom of
to the Robin equation and other field, Laboratory, the ice shelf was then used, along with an assumed
and theoretical determinations of the dielectric con- value of ce = Z95 for this depth interval. The thick-
stant of an air-ice mixture. ness of the ice shelf was then estimated (using eq 2

Table 1.1978 McMurdo Ice Shelf station data along traverse from shelf edge to ice shelf move-
ment marker 307.

Distance Brine Average Wavelet Effctive bulk Effective
Station inland depth* spec traud time t dielecric velocity V.

no. (M) (in) gwavity p (ns) constant (n¢ns)

A 5 2.5 0395 22 1.74 0.227
B 770 8.85 0.509 83 1.98 0.213

lob 2900 13.5 0.540 130 2.08 0.208
C 3590 9.45 0.56 190 2.15 0.204
D 7370 33.8 0.624 344 2.33 0.196
E 9560 50.4 0.686 529 2.48 0.190

307 9700 - - 1263 - -

°Drillhole measurements
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INTERNAL LAYER

ts1

BEDROCK • ".

, -.

Figure 4. Graphic record of 300-MHz radar sounding data showing internal layers in the snowfield below Castle Rock
(Fig. 1). The dotted line mnarks the site where a 20-rn firn core was obtained. Core analysi, reveadN the internal layers
were summner stratigraphy horizons.
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Transmitted Brine Layer
Impulse Ref lect ion

4

2- Figure 5. E=ple of receiw radio echo
* Internal Layers Uumlet. In the graphic record many horwn

or internal •lyers uei observed in the ie shf
-4_ __ I Ji. These__ __ o uld be tracAzdir many

0 20 40 60 80 100 120 140 klomee. Their voltae ampitu signature
Time (ns) is Amon aboveOwn zKovacs et al. 1982).

and 3) to be 113 m. This thickness Table 2. McMurdo Ice Shelf depth increment data.
estimate will be compared with
the estimated thickness for sta- station increment ave t diEectric bulk ff tV
tion 307 as determined from the increment (md gravity p (Ns) cstant e, (M/ns)
1978 radar two-way travel time
data obtained at this site. A-B 6.35 0.504 61 2.08 0.20

The brine layer depths and B-C 10.6 0.633 107 2.29 0.199
C-D 14.35 0.726 154 2.59 0.186

two-way travel time differences D-E 16.6 0.808 185 2.79 0.180
between stations A-B, B-C, C-D
and D-E are listed in Table 2
along with the average firn densities for the depth rather than perpendicular to the crystal c-axis. Smi-
increments. Also listed are the calculated e' and Ve larly, Fujita et al. (1992) have shown experimentally
values for the depth intervals. A plot of the e vs.p that the change could be as much as 0.04 at 9.7 GHz.
values given in Tables 1 and 2 is shown in Figure 2. Thin-section studies of the crystalline structure of

Numerous investigators have determined that, at the cores obtained from the McMurdo Ice Shelf re-
- -10*C and a p of 0.917, the dielectric constant of vealed that the ice grains had a random c-axis fabric
pure polycrystalline ice, at the frequencies of inter- that existed from the surface to the bottom of our 50-
est, is well represented by a value of 3.15 (e.g., m-deep drill hole near station 307 (Fig. 2). This ran-
Cummings 1952, Evans 1965, Ulaby et al. 1986, Koh dom fabric orientation therefore eliminates ice crys-
1992). Koh (1992) also reaffirmed that er is high-fre- tal anisotropy effects as a contributing factor in our
quency-independent. Fujita et al. (1992) reconfirmed radar measurements.
that er for polycrystalline ice is also insensitive to Three curves are also shown in Figure 6. One
temperature, varying at about 0.0009/CO. Therefore, curve represents Robin's equation (eq 5). Another is
in the subsequent discussion and equations, an Cr a refraction type curve statistically fitted through the
value of 3.15 will be used for pure bubble-free ice at data. The equation for this curve,
a specific gravity of 0.917. The intercept of these val-
ues is shown by a cross in Figure 6 and in subse- ( =(0.992 + 0.848p) 2  (6)

quent figures.
It has been found that when glacial ice is under fits the data with an r2 = 0.989 and a standard error

stress, as in a flow regime, an anisotropy develops in of 0.035. The third curve shown was determined as
which the c-axes of the ice crystals become aligned. follows. The four-parameter volume fraction type
Johari and Chasette (1975) found that in the infrared equation
region a dielectric constant change on the order of
0.004 could arise if the electric field was parallel 4 vaNFEa + iVri )2(

7



Si'i 0r Eq. 5

13.0- 6 8

2.0
Figure 6. Field-determined in-situ effective
"dielectric constant e; vs. the bulk specific

1.5 gravity ofMcMurdo Ice Shelfirn. The curves
passing through the fiLd data * uere drved
from the indicated equations which are described

0. 0.2 0.4 0.6 0.8 1.0 in this report. The + represents the dilctric con-
p, Spwfc Gmvfty stant (3.15) of pure ice (p = 0.917).

whereeis the dielectric constant ofair (= 1) andCriis E, (1 + 0.508p)3  (10)
the dielectric constant of pure ice, va and vi, the vol-
ume fractions of air and ice, respectively, were used Equation 9 can also be well represented by a refrac-
to calculate the dielectric constant of fim and ice tion type equation, with an r2 = 0.999, as
over the specific gravity range from 0 to 0.917 in in-
crements of 0.5. A refraction type expression was = (0.988 + 0.845p)2  (11)

then statistically fitted through this data. From this
procedure it was found that eq 7 is well represented, whicheisnvery nearagreement withaeq 8.at a cross-correlation of r2 = 1.000, by the expression Wiener (1910) presented a two-phase mixing for-

mula containing an empircal structure factor called
e =(l + 0.845p)2. (8) the Formzahl WL This function varies with the shape

and orientation of the inclusions. In fim and ice the
It is apparent from Figure 6 that both Robin's em- Formzahl may vary if the medium is nonisotropic.

pirical equation (eq 5) and the simplified volume The form of the equation for an air-ice mixture is
fraction expression (eq 8) fit the McMurdo Ice Shelf
dielectric constant vs. specific gravity field data very •_1 vi -1
well. e + i Elri

Numerous other empirical and theoretical ex-
pressions have been used to describe the dielectric (
constant of an air-ice mixture. A number of these ex- + (1 - vi) j a -1 (12)
pressions will be compared with the McMurdo Ice (Ca + AL /
Shelf data and, where statistically permissible, the
expressions will be simplified to a refraction equa- Since wa is one, the second term on the right is zero. It
tion, following the procedure used to obtain eq 8. was found through statistical regression that 12

Looyenga (1965) proposed a mixing formula fits the McMurdo Ice Shelf fim dielectric constant vs.
based on spherical inclusions specific gravity data best when gL = 5.5. This value is

in good agreement with the values of 5 given in
' ,/+ 1/)vi ,/3 (9) Bogorodsky et al. (1985) and 75 given in Ambach

ari + .j and Denoth (1972) for vertically propagating elec-

and because %a = I then tromagnetic waves in firn and ice. But it is not in
agreement with Shabtaie and Bentley (1982), who

S- v+]3 found that g = 0 provided the best fit for their com-
S= [Er -1) Vi + 1mon reflection point measurements at Dome C, Ant-

arctica.
This equation was simplified by Stiles and Ulaby The results from this measurement technique
(1981) to read have caused the most concern regarding the validity

8



3.5

I 11

2.5-E.1 10

2.0 -

1.5- Figure 7. Field-determined in-situ efOfctive di-
electric constant 4e vs. the bulk spefic gravity

1.C of McMurdo Ice Shelf firn. The curves passing
0 0.2 0.4 0.6 0.8 1.0 through the field data were deved fom the inds-

p. specifc Gravity cated equatons which are described in this report.

of the Robin equation. It is generally expected that =Va = -_I Ea + (- II- +
' I polar firn and ice g should be above 2 (e.g., Evans 3)• •a + 2r i+
1965). A Formzahlin the range of - 5-7 suggests that
the horizontal layering in polar fin has a weak ef-
fect on F4. Equation 12 can be simplified to Since E = 1, the first term on the right side is zer,

and the equation for an air-ice mixture becomes

r' = (1 + 0.840p)2  (13)

which cross-correlates extremely well with the 3 = V ri 2(16)
3E'r E' j + 2E'Wiener equation, when IL = 5.5, at r2 = 1.000.

The curves for eq 10,11 and 13 and the McMurdo
Ice Shelf 4E vs. p data are shown in Figure 7. Here which in turn is well represented at a ciss-correla-
again the curves for the simplified equations are tion of r2 = 0.999 by

seen to fit the field data very well.
A mixing formula by deLoor (1956), when ap- Er = (0.988 + 0.850p)2. (17)

plied to an air-ice medium containing spherical in-
clusions, is For disk-shaped particles the Polder and van

Santen (1946) equation is
F'= [3(l - 0) (Ei- 1) - E

( i (14) Er = 3ri + 24,ri (,ri - 1) (1 -*)

Cri - (4;r - 1) (1 -

+ 2 ±1 V[3(1 - 0l) (E•,i - 1) - Er'i + 2]12 + 81•i]4 Whc a b ipif:L!t

+2± [31~)(I..1~4+22+4i/4 which can be simplified to

where 0 is the porosity. This equation, when simpli- ' ,+ (1.006 + 0.839p)2  (18)
fled to a refraction type expression, becomes with a crosscorrelation of r2 = 1.000.

E' = (0.983 + 0.858 p)2  (15) The Tmga et aL (1973) mixing formula for an air-
ice medium containing spherical inclusions is

with a cross-correlation of r2 = 0.999.
The B6ttcher (1933) and Polder and van Santen 3vi (3Fri - 1)

(1946) mixing formula for a medium composed of Er = 1 + -r (19)
spherical inclusions is ( +i

9



3.0

2.5-

2.0- Eq.1 2

1.5-17 Figure 8. Field-determined in-situ effective di-
electric constant m vs. the bulk specific gravity of

1.0 McMurdo Ice Shelf fim. The curves passing
0 0.2 0.4 0.6 0.8 1.0 through the field data were derived from the indi-

p, Specific Gravity cated equations which are described in this report.

which when simplified becomes which can be simplified to

r= (1 + 0.910p)/(1 - 0.455p) (20) e' = 0.367 + 3.035 p (24)

with a cross-correlation of r2 = 1.000. Equation 19 with a cross-correlation of r2 = 1.000.
does not cross-correlate very well with a refraction The linear model proposed by Hufford (1991) for
type expression. an air-ice mixture is

The curves respresenting eq 15, 17 and 20 are
shown in Figure 8, along with the e' vs. p data from
the McMurdo Ice Shelf. Here we see that the curves Er = 1 + 3vi ri (25)
representing eq 15 and 17 pass nicely through the ri
field data but the curve representing eq 20 does not.
From Figure 8 it appears that the Tmga et al. equa- which can be reduced to
tion should not be used. Sihvola et al. (1985) also
found that the Tmga et al. expressbn (eq 19) is not Fr = 1 + 1.366 p (26)
appropriate for determining Fr for an air-ice mix-
ture. with a cross-correlation of r2 = 1.000.

There are other expressions that also do not fit the Equations 22,24 and 26 are graphically shown in
McMurdo Ice Shelf field data well. Three of these Figure 9, along with eq 6 and the McMurdo Ice Shelf
equations are given below. The first is a volume av- ce vs. p field data. Clearly, eq 22 does not track
erage expression (Lang 1983): through the field results and should not be used.

Equations 24 and 26 appear to have a limited range
Er = 4) La + (1 - 4)) Fr (21) of use; however, they are not considered acceptablein light of how well, for example, eq 6 fits the data.

which can be further simplified to Other expressions for determining the dielectric
constant of an air-ice mixture vs. specific gravity are

=1 + 2.345 p (22) listed in Appendix A.r To further show that a simple refraction type
with a cross-correlation of r2 = 1.000. equation can well represent the dielectric constant of

Ackley and Keliher (1979) proposed the use of a a mixture of air and ice, the 10 McMurdo Ice Shelf
mixture formula by van Beek to determine er for po- dielectric constant vs. specific gravity data from
lar ice containing spherical inclusions: Tables 1 and 2 were combined with 15 laboratory

determinations of Cummings (1952) at 9.4 GHz, 17
+ ' /- field measurements made at 20 MHz on "old" al-

Lr=E'riI1+ 3E-rE ri. (23) pine snow by Denoth (1978) and 47 laboratory mea-
E'ri + aJ surements by Nyfors (1982) made at UHF and SHF

10



3.05 1 1

2*5

12.0- q 2 2

S1.5 - Figure 9. Field-determined in-situ effective di-
electric constant 'e;vs. the bulk speci*i gravity

. 1of McMurdo Ice Shelffirn. The curves passing
0 0.2 0.4 0.6 0.8 1.0 through thefield data rwr derie•flvm the mda-

p. Specific Gravity cated equations which are escribe in this report.

3.5I I I I

g 3.0-

Eq. 27

2.0--

1.5- Figure 10. Field and laboratoSdeined
values of the dielectric constant offirn vs. spe-

10 _ __ gravity. The regression curve passing
0.2 0.4 0.6 0.8 1.0 through the data is represented by equation 27 as

p, Specific Gravity discussed in this report.

frequencies on a variety of snow types (e.g., fine- stant test data at the higher specific gravities. With-
and coarse-grained snow). A plot of these data out the weighted point, the regression equation
along with a weighted point of Cri =3.15 at p = 0.917 would read eri = (1.002 + 0.836 p)2 with an r2 of 0.994
is given in Figure 10. The resulting regression curve and a standard error of 0.035. This equation gives an
passing through the data is derived from c' of 3.13 at a p of 0.917, the same value obtained by

using eq 6.
E' = (1.000 + 0.845p)2  (27) It was previously stated that Jezek and Roeloffs(1983) made radar sounding measurements, in

This curve fits the data with a correlation of r2 = Greenland and Antarctica, for the purpose of evalu-
0.999 and a standard error of ± 0.031. It should be ating the validity of the Robin equation. In these
noted that eq 27 is also the simplified form of the measurements, a metal target was lowered down a
volume fraction expression (eq 8). borehole and the travel time of a transmitted wave

The justification for adding a weighted dielectric from the surface to the target and back was re-
constant of 3.15 at a specific gravity of 0.917 to the corded. Using the known depth to the target and the
data in Figure 7 is based on our earlier determina- density of the fim and ice above the target, they cal-
tion that this dielectric constant is a representative culated the effective radar wave velocity in the me-
value for pure ice. In addition, the weighted value dium for different target depths. The average Ve
was added because of the paucity of dielectric con- data for each depth at the Dye 3 Greenland site are
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V,. Eft"h V4od0y (m'f ) to note that the form of this refraction expression
16 170 175 ISO may also be used to describe the dielectric constant0I I of soil vs. its moisture content, as shown in Appen-

dix B.

V,. =-168.3W0 DISCUSSION
r a 0.848 Il,2oo)- StdiErr. 1.24 / ,y"sid 1.24 df The borehole-measured depths to the brine layer

S/ in the McMurdo e Shelf were plotted vs. the radar
- 7wavelet two-way flight time measurements in Fig-

"/ ,/ ure 12. The two-way flight time measured to the bot-
.tom of the ice shelf in 1978 at station 307 was 1263 ns

400 * (Table 1). From the regression equation given in Fig-

d ure 12, this time would represent a depth of 116 m.
_ .As previously stated, Kovacs et al. (1982) gave an

va. = 1sa + 1775s estimated thickness of 113 m for the shelf at station
vi $ e • Ro•'. q. 24 in 1977. Since station 307 was 40 m east of station

600 - . 307, one could assume that the ice is - 0.3 m thicker

Vs, = 169 + 1782/D at station 307 than at station 24 because the ice shelf
via sq. 27 increases in thickness to the east of this station (Fig.

2) at about 8 m/km. In any event, the depth differ-
2- ff-- s ence between the two determinations (113 m and

82 1 I I 116 m) is about a 21/2% variance. Clearly the two
assessments of ice shelf thickness are in close agree-

Figure 11. Effective radar velocity vs. depth at DYE-3 ment, given the snow accumulation (0.9 m between
Greenland. The data points are lezek and Roeloffs' average surveys), bottom melting and shelf movement dy-
values, the Robin curve is from their analysis and the right namics, which can cause short- as well as long-term
curve is based on eq 17 in this report. ice shelf thickness variations at a location that is not

fixed in space. In addition, the 1982 estimate was
based on an assumed bulk ice density for the shelf
below the brine layer depth, a density that now ap-

shown in Figure 11. Also shown is the Ve vs. depth pears to be a bit high.
curve they calculated using Robin's equation, the Another interesting plot is that of the dielectric
depth--density profile data for the site and eq 3. The constant values vs. depth, as shown in Figure 13.
regression curve we fitted to their velocity data was From the regression equation for the curve in Figure
selected because it paralleled the calculated curve 13, ee for the -116-m-thick ice shelf at station 307 can
using Robin's equation. be estimated to be - 2.74. Jericek and Bentley (1971)

As indicated in Figure 11, the regression curve gave an e' of 3.01±0.03 for the 510-m-thick Ross Ice
through Jezek and Roeloffs' data gives an apparent Shelf near Roosevelt Island, and Jezek et al. (1978)
2 m/pis slower velocity gradient than the velocity estimated an E value of 2.99 for the 480-m-thick
vs. depth curve calculated with use of Robin's equa- Ross Ice Shelf at station N19. The equation in Figure
tion. 13 gives an a of 3.02 and 3.01 for these two ice shelf

The third curve shown in Figure 11 was calcu- thicknesses, respectively. The dose agreement be-
lated with the use of eq 27, the site depth-density tween the field and calculated values are surprising
data and eq3. As one would expect, this curve gives when one considers that the depth-density profile
a slightly higher velocity vs. depth profile. Never- of the fim layer can be expected to vary with ice
theless, the agreement between the three curves is shelf locations. Nevertheless, this variation may not
considered to be very good. be enough to significantly influence the bulk dielec-

We believe that the dose simlarity between eq 5 tric constant of the fir layer and in tum that of the
and eq 6 and 27 reaffirms that the empirical assess- ice shelf. If so, then the results from the McMurdo
ment of Robin et al. (1%9) and Robin (1975) for de- Ice Shelf, a lobe of the Ross Ice Shelf, may be appli-
scribing the dielectric constant of polar fin and ice cable to other areas of the Ross Ice Shelf. In any

vs. their specific gravity is valid. It may be of interest event, Figure 12 may be used for estimating the

12
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depth of these ice shelves from the two-way travel tained from the saline ice/seawater interface, then
times obtained from vertical radar sounding mea- the two-way travel time measured in this saline ice
surements. layer may be used to estimate the layer thickness T

However, a note of caution is in order. For ex- from
ample, the Ross Ice Shelf at Site J-9 is known to have
a -6-m-thick layer of saline ice accreted to the bot- T=-0.708+0.088t (28)
tom (Zotikov 1979, Zotikov et al. 1980, Morey and and the layer effective dielectric constant from
Kovacs 1982). Because this ice attenuates electro-
magnetic energy at the frequencies often used in ra- e' = 5.983 exp(-0.477T) + 3.172 (29)
dar sounding (as does the brine-soaked fim), and e

given the spreading losses which occur with dis- Equations 28 and 29 are from the results of impulse
tance, a reflection from the saline ice/seawater inter- radar two-way time of flight measurements made at
face may not be obtained. Nevertheless, a reflection - 100 MHz on thick sea ice by Kovacs and Morey
may be received from the fresh ice/saline ice inter- (1990). For saline ice growth over 10 m thick on the
face, and therefore the depth to this interface could bottom of an ice shelf, a value of 3.25 ± 0.05 for Fe
be estimated using a two-way travel time measure- may be reasonable for estimating T using eq 3
ment and Figure 12. Should a reflection also be ob- wherein T is substituted for D.
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It set rn-s that many distributions in nature tend to Bogorodsky, V.V., C.I. Bentley and RE. Gudmand-
follow exponential-like trends. The above results for sen (1985) Radioglaciology Dordrecht, Holland: D.
the variation in the dielectric constant of fire and ice Reidel Publishing Co.
vs. specific gravity as well as the results for the di- Bbttcher, C.J.F. (1952) Theory of Electric Polarization.
electric constant vs. the moisture content of soil Amsterdam: Elsevier, 1st ed., sec. 64, p. 415.
(App. B) appear to represent two of them. Cummings, WA. (1952) The dielectric properties of

ice and snow at 3.2 centimeters. Journal of Applied

Physics, 23: 768-773.
CONCLUSIONS deLoor, G.R (1956) Dielectric properties of heteroge-

neous mixtures. Thesis, University of Leiden.
The findings of this report reaffirm that a simple Denoth, A. (1978) On the calculation of the dielectric

refraction type equation can be used to describe ex- constant of snow. Deuxieme Rencontre Internationale
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APPENDIX A. SUPPLEMENT EQUATIONS FOR DETERMINING
THE DIELECTRIC CONSTANT OF AN AIR-ICE MIxrURE.

Additional formulations are presented in this section for determining the e, vs. p for fim
and ice. All equations have been offered by the indicated authors as a means of determining the
rE of an air-ice mixture. Below each equation is a table giving example air-ice mixture specific

gravities and the calculated c' value as determined by eq 27 and by the new expressions pre-
sented.

Turi et al. (1984) made measurenents in the 0.85-12.6 GHz range on snow. Their empirical
equation for Fr is

ri

Fr = 1 + 1.7 p + 0.7 p 2  (A)

which they state for practical purposes can be simplified to

r-= 1 + 2 p. (A2)

p &;(eq27) er (eqA1) e'(eqA2)

0.0 1.0 1.0 1.0
0.2 1.37 1.37 1.40
0.4 1.79 1.79 1.80
0.6 227 2.27 220
0.8 2.81 2.81 2.60
0.917 3.15 3.15 2.83

Ambach and Denoth (1980) give the following empirical equation for their dry snow
measurements at 20 MHz:

r =1 + 2.2 p. (A3)

p £r (eq 27) c'(eqA3)

0.0 1.0 1.0
0.2 1.37 1.44
0.4 1.79 1.88
0.6 227 2.32
0.8 2.81 2.76
0.917 3.15 3.02

Hallikainen et al. (1982) made measurements at 4-18 GHz on dry snow and found empiri-
cally that

Er = 1.91p. (A4)
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p e ,(eq 27) e (eqA4)

0.0 1.0 1.1
02 137 1.38
0.4 1.79 1.76
0.6 2.27 2.15
0.8 2.81 2.53
0.917 3.15 2.75

Burns et al. (1985) made measuremerns at 100 MHz on dry snow and found empirically that

er= 1.1 + 2.2p. (A5)

P E' ,(eq 27) Er (eq A5)

0.0 1.0 1.1
02 137 1.54
0.4 1.79 1.98
0.6 2.27 2.42
0.8 2.81 2.86
0.917 3.15 3.12

Fujita et al. (1992) made measurements at 9.7 GHz on polyaystalline ice and found from
their results that

= 3 .08p + 0.41. (A6)

P c,(eq27) E,(eqA6)

0.0 1.0 0.41
0.2 1.37 1.03
0.4 1.79 1.64
0.6 2.27 226
0.8 2.81 2.87
0.917 3.15 3.23

Pearce and Walker (1967) proposed the following expression based on theoretical con-
siderations:

Er = 3.16p + 0.41 (A7)

where 0.535•< p <0.920.
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p e;(eq 27) e4(eqA7)

0.6 2.27 2.31
0.7 2.53 2.62
0.8 2.81 2.94
0.917 3.15 3.31

Sihvola et al. (1985) proposed a mixing formula by Taylor (1965) for an air-xoe mixture with
randomly oriented disk-shaped inclusons of the form

0 •q(1-Z)

er 3 (A8)Ir =+ AL (I - 3eri) (S

which can be simplified to

er = (1.007 + 0.838p)2  (A9)

with aacross-orrelation of r2= 1.000. Sihvola et A showed that eqA8 fitted their data, obtained
at 0.8-13 GHz, better than another one by Taylor for spherical inclusions.

P e'r(eq27) Fr (eqA9)

0.0 1.00 1.01
02 1.37 1.38
0.4 1.79 1.80
0.6 2.27 2.28
0.8 2.81 2.81
0.917 3.15 3.15

In an important paper on dielectric mixing formulas, Sihvola (1989) presents a self-consis-
tent general mixing formula for determining the complex permittivity of a homogeneous ma-
terial containing spherical inclusions. As applied to determining the dielectric constant of dry
firn and ice, his expression is

"b 2 + 4ac - b (A10)

where

b = e + 2 e. - 2 0ae -fi (e'ri - La) (1 + cy)

C=, a[Ci + (2- )Ea+f(2 m)(e'rje-)
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and parameter a is a positive integer and parameterf is the ice density fraction.
Sihvola showed the ,nterrelationship between his mixing formula and that of other authors.

His results indicated that when a = 3, eq A10 gave e; values for firn and ice in dose agreement
with eq Al. Equation A10, with a = 3, can be simplified to

E = (0.988 + 0.85 9p)2  (All)

with a cross-correlation of r2 = 1.000.

P e(eq27) c,(eqAll)

0.0 1.00 0.98
02 137 135
0.4 1.79 1.77
0.6 2.27 2.26
0.8 2.81 2.81
0.917 3.15 3.15

Sihvola also showed that an expression by Sen et al. (1981) for a medium containing spheri-
cal inclusions:

• /, 1/3

E'*i - E

when applied to firn and ice gave e rvalues in good agreement with equation Al. When eq A12
is simplified to a refraction type expression we obtain

Er = (0.995 + 0.848p) 2  (A13)

with a cross-correlation of r2 = 1.000.

Er (eq27) er(eqA13)

0.0 1.0 0.99
0.2 137 1.36
0.4 1.79 1.78
0.6 2.27 226
0.8 2.81 2.80
0.917 3.15 3.14

The interested reader is directed to Sihvola's paper for additional mixing formulas that may
be applied to estimating the dielectric constant of fim and ice.

Of the above expressions, it appears that eqAl, A9, All and A13 correlate best with eq 27.
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APPENDIX B: THE DIELECTRIC CONSTANT OF A SOIL-WATER MIXTURE.

The dielectric constant of dry soil e'r typically lies between 2 and 4, while the relative
dielectric constant of water Frw is 81 at 20'C. This value will vary with temperature from about
88 at 00C to lower values as the temperature climbs. The value for r ', is also frequency depen-
dent. Since erw is such a large value it has a major influence on the relative dielectric constant of
the soil-moisture mixture •r,. Here we show the variation of Erm vs. soil moisture content m,
at a fixed frequency of 1.074 GHz and at room temperature. The soil moisture content is the
ratio of the weight of water per unit volume of soil.

Presented in Figure B1 are the results of 403 laboratory c'm vs. m, tests by Lundien (1971).
His measurements were made on sand, silt, silt-loam and day soils using an L-band interfer-
ometer. Also shown is a refraction equation which well describes £rw vs. m, for the com-
mingled soils. The regression curve in Figure B1 fits the data with an r2 = 0.970 and a standard
error of ± 2.02. When the regression curve is forced through an Er£w for water of 81, the equation
for the curve becomes as shown in Figure B2. The data lying below the regression curve tends
to be those for day type soil while the data above the curve is that for the coarser grained soils.
Representative regression curves passed through the sand and clay material and forced
through an ew of 81 at mv = 1 are shown in Figure B3.

The test results shown in Figure B1 will vary with temperature as previously mentioned.
However, Lundien (1971) found that over a temperature range of 0' to 651C the change in Fr,

appears to be uniform, varying at about 112% per *C.

40

•30° °

II
-u). " •r 'n (1.658 + 7.72Mv,)2

r2 = 0.970
Standard Error = 2.02

0 i . -. - . I , L . I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
MW, Moisture Content (MgWm 3)

Figure B). Dielectric constant of soil vs. moisture content.
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-'nn = (1.57 + 8.47Mv - 1.04Mv2 )2

2 = 0.997
S0 Std. Error =1.81
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Figure B2. Dielectric constant of soil vs. moisture content where
the regression curve was forced through a dielectric constant for
water of 81.

II
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Figure B3. Representative curves for the dielectric constant of
sand and clay soil vs. moisture where the respective curves were
forced through a dielectric constant for water of 81.
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